Ciencia

Los supertelescopios se ponen 'gafas'

Un nuevo sistema de óptica adaptativa basado en tomografía láser permite al telescopio VLT corregir las turbulencias de la atmósfera y obtener imágenes con un detalle sin precedentes de planetas y estrellas.

El VLT (Very Large Telescope) de ESO, ha llevado a cabo la primera luz de un nuevo modo de óptica adaptativa llamado “Tomografía láser” y ha captado imágenes de prueba extraordinariamente precisas del planeta Neptuno, cúmulos de estrellas y otros objetos. El instrumento pionero MUSE en modo de campo estrecho, trabajando con el módulo de óptica adaptativa GALACSI, ahora puede utilizar esta nueva técnica para corregir las turbulencias de la atmósfera a diferentes altitudes. Ahora es posible captar imágenes desde la superficie de la tierra en longitudes de onda visibles más nítidas que las del Telescopio Espacial Hubble de NASA/ESA. La combinación de una gran nitidez de la imagen junto con las capacidades espectroscópicas de MUSE, permitirá a los astrónomos estudiar las propiedades de los objetos astronómicos con mucho más detalle de lo que ha sido posible hasta ahora.

Ahora es posible captar imágenes en longitudes de onda visibles más nítidas que las del Hubble

El instrumento MUSE (Multi Unit Spectroscopic Explorer, explorador espectroscópico multiunidad) fue el primer instrumento en beneficiarse de esta nueva instalación y ahora tiene dos modos de óptica adaptativa: el modo de campo amplio y el modo de campo estrecho. El primero corrige los efectos de la turbulencia atmosférica hasta un kilómetro por encima del telescopio sobre un campo de visión relativamente amplio. Pero el nuevo modo de campo estrecho, que utiliza tomografía láser, corrige casi la totalidad de las turbulencias atmosféricas sobre el telescopio para crear imágenes mucho más nítidas, pero en una región más pequeña del cielo.

Neptuno desde el VLT y el Hubble

Con esta nueva capacidad, el telescopio UT-4 de ocho metros alcanza el límite teórico de nitidez de la imagen y ya no está limitado por las perturbaciones atmosféricas. Es algo extremadamente difícil de lograr en el rango visible y proporciona imágenes comparables en nitidez a las del Telescopio Espacial Hubble de NASA/ESA. Permitirá a los astrónomos estudiar con un detalle sin precedentes objetos fascinantes como agujeros negros supermasivos en el centro de galaxias distantes, chorros lanzados por estrellas jóvenes, cúmulos globulares, supernovas, planetas y sus satélites en el Sistema Solar y mucho más.

La óptica adaptativa es una técnica que compensa los efectos de las turbulencias provocadas por la atmósfera terrestre, también conocido como visibilidad astronómica o seeing, un gran problema al que se enfrentan todos los telescopios terrestres. La misma turbulencia de la atmósfera que hace que las estrellas titilen a simple vista, hace que los grandes telescopios obtengan imágenes borrosas del universo. La luz que nos llega de estrellas y galaxias se distorsiona al atravesar la capa protectora de nuestra atmósfera, y los astrónomos deben utilizar tecnología inteligente para mejorar de forma artificial la calidad de la imagen.

Imágenes obtenidas con MUSE del cúmulo globular de estrellas NGC 6388

Para lograrlo, se fijan cuatro láseres brillantes al UT4 para proyectar hacia el cielo columnas de una intensa luz anaranjada de 30 centímetros de diámetro que excitan los átomos de sodio de las capas altas de la atmósfera y crean estrellas de guiado láser artificiales. Los sistemas de óptica adaptativa utilizan la luz de estas "estrellas" para determinar la turbulencia de la atmósfera y calcular las correcciones mil veces por segundo, ordenando al espejo secundario del UT4, delgado y deformable, que modificar constantemente su forma, compensando las deformaciones que provoca la atmósfera y corrigiendo la luz distorsionada.

https://youtube.com/watch?v=yDMV7kmrfWY%3Fshowinfo%3D0

Este nuevo modo constituye también un importante paso adelante para el ELT (Extremely Large Telescope) de ESO, que necesitará tomografía láser para alcanzar sus objetivos  científicos. Estos resultados en UT4 con el AOF ayudarán a los científicos e ingenieros del ELT a implementar una tecnología de óptica adaptativa similar en el gigante de 39 metros.

Fuente: ESO

Apoya TU periodismo independiente y crítico

Ayúdanos a contribuir a la Defensa del Estado de Derecho Haz tu aportación
Salir de ver en versión AMP