Ciencia

Un técnica para descubrir exoplanetas en sistemas de varias estrellas

Se trata de una mejora del coronógrafo de vórtice que permite reconfigurar un cristal líquido para cualquier sistema estelar, independientemente del número de estrellas que incluya y multiplicar la información que se obtiene.

  • Un técnica para descubrir exoplanetas en sistemas de varias estrellas

Un exoplaneta o planeta extrasolar es un planeta que está fuera de nuestro sistema solar. La primera detección confirmada de uno data de 1988, pero ha sido en los últimos años cuando el número de hallazgos confirmados se ha disparado. Los últimos datos oficiales (a cierre de abril) indican que se han encontrado 3.608 planetas en 2.702 sistemas planetarios de los que 610 tienen más de un planeta.

Hasta la fecha se han encontrado 3.608 planetas en 2.702 sistemas planetarios

Un número que empieza a ser significativo hace que, por pura probabilidad, empiecen a aparecer planetas con características que los hacen potencialmente habitables, lo que ha acaparado portadas en prensa y que los exoplanetas sean conocidos por el público en general.

Con todo detectar exoplanetas no es precisamente fácil. Y ello se debe, fundamentalmente, a la enorme diferencia de luminosidad entre el planeta y la estrella que orbita, por lo que hay que recurrir a métodos indirectos y renunciar, en muchos casos, a disponer de información de sus atmósferas, por ejemplo, ya que no se pueden “ver”. Pero puede que esto cambie.

Artur Aleksanyan encabeza un grupo de astrónomos de la Universidad de Burdeos (Francia) que a propuesto una mejora a una de las técnicas que se emplean en la búsqueda de exoplanetas, en concreto la coronagrafía, que podría permitir ver directamente los exoplanetas en sistemas con dos o más estrellas, los más habituales en el universo hasta donde sabemos.

El coronógrafo de vórtice permite que los objetos débiles cercanos a la fuente se vuelvan visibles

Un coronógrafo de vórtice fuerza una trayectoria espiral hacia el exterior a la luz entrante desde una fuente puntual en el espacio, “doblando” la luz a lo largo de una ruta que ya no coincide con la cámara del telescopio. Al hacerlo, bloquea la luz de la fuente, permitiendo que los objetos débiles cercanos a la fuente se vuelvan visibles: los fotones de los objetos pasan a través del dispositivo sin obstáculos. Esos objetos incluyen a los exoplanetas que orbitan a las estrellas. Pero los coronógrafos de vórtice actuales sólo pueden atenuar una fuente a la vez, eso está bien para conseguir imágenes de un planeta que tenga una sola estrella anfitriona, pero no para uno con múltiples estrellas.

El coronógrafo de vórtice propuesto por Aleksanyan y sus colaboradores utiliza defectos reconfigurables en un cristal líquido, que son los que fuerzan las trayectorias en espiral a las fuentes puntuales de luz. Los dispositivos tradicionales usan defectos únicos fijos de varios materiales. Usando rayos láser, se pueden escribir y borrar múltiples defectos del cristal líquido rápidamente y con una precisión extraordinaria. Esto permite que el dispositivo se configure fácilmente para cualquier sistema estelar, independientemente del número de estrellas que incluya.

Como demostración del principio de funcionamiento, los investigadores simularon un sistema de triple estrella en el laboratorio usando tres haces de luz, y dirigieron los haces hacia un dispositivo con tres defectos. Encontraron que el dispositivo atenuaba drásticamente la luz que llegaba a una cámara procedente de estas estrellas artificiales. El dispositivo podría incluir cualquier número de defectos, ampliando significativamente las capacidades de los coronógrafos de vórtice actuales, multiplicando así el número de exoplanetas que podrían descubrirse y, sobre todo, aumentando la calidad de la información sobre ellos.

Referencia: Artur Aleksanyan, Nina Kravets, and Etienne Brasselet (2017) Multiple-Star System Adaptive Vortex Coronagraphy Using a Liquid Crystal Light Valve Physical Review Letters doi: 10.1103/PhysRevLett.118.203902

* Este artículo es parte de ‘Proxima’, una colaboración semanal de la Cátedra de Cultura Científica de la UPV con Next. Para saber más, no dejes de visitar el Cuaderno de Cultura Científica.

Apoya TU periodismo independiente y crítico

Ayúdanos a contribuir a la Defensa del Estado de Derecho Haz tu aportación Vozpópuli