Casi seguro que has oído hablar del Big Bang, ese acontecimiento, por llamarlo de alguna manera, que marca el comienzo de nuestro universo. Lo que es posible que no sea tan seguro es que estés familiarizado con el concepto de inflación cósmica.
La inflación cósmica es una teoría que afirma que muy poco tiempo después de esa singularidad que es el Big Bang, y por poco tiempo queremos decir 10-36s, y durante solo un momento, porque terminó a los 10-32s del Big Bang, el universo (el espacio) sufrió un crecimiento exponencial enorme. Tras este periodo inflacionario el universo siguió, y sigue, expandiéndose pero a un ritmo muchísimo menor.
La inflación cósmica surgió para explicar el origen de la estructura a gran escala del universo. Muchos físicos creen también que explica por qué es igual en todas direcciones (isótropo), por qué el fondo cósmico de microondas, el rastro más cercano al Big Bang que podemos observar, se distribuye de forma homogénea en el cielo, por qué el universo es plano y por qué no se han observado los monopolos magnéticos (los equivalentes a las cargas eléctricas positivas y negativas que se pueden encontrar por separado).
Pero los científicos no cesan de investigar posibilidades hasta que una de ellas demuestra que es el modelo que mejor describe la realidad. Así, esta descripción que hemos dado se corresponde a la versión “fría” de la inflación cósmica. Pero existe otra versión, la “caliente”. Y estos días se ha publicado un resultado que podría afianzarla como competidora.
Si la inflación fría data de los años ochenta del siglo XX, la versión caliente es de mediados de los noventa. Sin embargo, en veinte años esta versión no ha avanzado tanto como para ser considerada una teoría completa. Ello se debe a que, en este caso, los investigadores no han sido capaces de construir un modelo sencillo de la inflación caliente a partir de primeros principios. De hecho esto se consideraba poco menos que imposible. Hasta ahora.
En un trabajo encabezado por Mar Bastero-Gil, de la Universidad de Granada, y en el que es coautor el padre de la idea de la inflación caliente, Arjun Barera, de la Universidad de Edimburgo (Reino Unido), los autores toman prestado un concepto de las teorías de física de partículas para derivar exactamente eso, un modelo a partir de primeros principios.
En la teoría inflacionaria todo encajaba salvo algunos flecos. Ahora esto se pone interesante.
En la inflación estándar cualquier radiación preexistente se estira y dispersa durante esta breve fase expansiva y no se produce nueva radiación. La temperatura del universo, por tanto, cae vertiginosamente y es en un periodo posterior en el que el universo recupera su temperatura y se llena de nuevo de radiación (termalización). La inflación caliente es más sencilla. Se produce constantemente nueva radiación por un fenómeno llamado desintegración del campo inflatón (es este campo el que da lugar a la inflación); la temperatura no baja drásticamente, sino que se mantiene alta (de ahí lo de inflación caliente) y no hace falta introducir una fase de recalentamiento. A pesar de ser una idea más sencilla, irónicamente, la inflación cósmica necesitaba echar mano de, literalmente, miles de campos adicionales acoplados al de inflación para justificar su masa.
Lo que Bastero-Gil y sus colaboradores han hecho ha sido utilizar el mecanismo que estabiliza la masa del bosón de Higgs en las teorías de física de partículas, reduciendo de esta manera el número de campos necesario a un muy manejable cuatro y sin tener que introducir correcciones de masa. A este recurso lo llaman “pequeño Higgs”.
La comparación que los autores hacen entre las predicciones observacionales de su modelo con los límites a la inflación que se deducen de las observaciones del satélite Planck del fondo cósmico de microondas indican que encajan bastante bien. En la teoría inflacionaria todo encajaba salvo algunos flecos. Ahora esto se pone interesante.
Referencia: Mar Bastero-Gil, Arjun Berera, Rudnei O. Ramos, and João G. Rosa (2016) Warm Little Inflaton Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.151301